Excel® Link 3
User’s Guide

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Excel® Link User’s Guide
© COPYRIGHT 1996-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

May 1996

May 1997
January 1999
September 2000
April 2001

July 2002
September 2003
June 2004
September 2005
March 2006
September 2006
September 2006
March 2007
September 2007

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Sixth printing
Online only
Online only
Online only
Online only
Online only
Seventh printing
Online only
Online only

New for Version 1.0

Updated for Version 1.0.3

Updated for Version 1.0.8 (Release 11)
Updated for Version 1.1.2

Updated for Version 1.1.3

Updated for Version 2.0 (Release 13)
Updated for Version 2.1 (Release 13SP1)
Updated for Version 2.2 (Release 14)
Updated for Version 2.3 (Release 14SP3)
Updated for Version 2.3.1 (Release 2006a)
Updated for Version 2.4 (Release 2006b)
Updated for Version 2.4 (Release 2006b)
Updated for Version 2.5 (Release 2007a)
Updated for Version 3.0 (Release 2007b)

Getting Started

What Is Excel Link?

Installing Excel Link
System Requirements,
Installing Excel Link
Files and Directories Created by the Installation
Modifying Your System Path

Configuring Excel Link
Configuring Excel to Work with Excel Link
Setting Excel Link Preferences

Starting and Stopping Excel Link
Automatically Starting Excel Link
Manually Starting Excel Link
Connecting to an Existing MATLAB Session
Stopping Excel Link,

About Functions i,
How Excel Link Functions Differ from Microsoft Excel
Functions i .
Types of Excel Link Functions
Using Worksheets
Working with Arguments in Excel Link Functions
Using the MATLAB Function Wizard for Excel Link
Create Macros for Excel Link Functions

1-2

1-3
1-3
1-3
1-3
1-4

1-5
1-5
1-6

1-8

vi

Contents

Solving Problems with Excel Link

2

Aboutthe Examples 2-2
Data Regression and Curve Fitting 2-3
Worksheet Version 2-3
Macro Versionc.uuiiiiinniineeeennnnnnnns 2-6
Data Interpolation 2-9
Stock Option Pricing Using the Binomial Model 2-13

Calculating and Plotting the Efficient Frontier of
Financial Portfolios 2-16

Bond Cash Flow and Time Mapping 2-20

Functions — By Category

3

Link Management Functions 3-2

Data Management Functions 3-3

Functions — Alphabetical List

q |

Error Messages and Troubleshooting

Al

Excel Cell Error Messages A-2
Error Messagesuuiiiineennnnnnnnnnnns A-6
Audible Exror Signals A-10
DataErrors0iiiiiiiiiiiiiiiii., A-11
Matrix Data Errors, A-11
Errors When Opening Saved Worksheets A-11
Examples

MacroExamples i, B-2
Financial Examples B-2

Index

viii Contents

Getting Started

What Is Excel Link? (p. 1-2) How Excel Link works with both
MATLAB® and Microsoft Excel®

Installing Excel Link (p. 1-3) How to install Excel Link

Configuring Excel Link (p. 1-5) How to configure Excel and MATLAB

to work with Excel Link
Starting and Stopping Excel Link How to start and stop Excel Link

(p. 1-8)

About Functions (p. 1-10) Discusses the two kinds of Excel
Link functions: Link Management
and Data Management

Dates (p. 1-20) How dates are represented in Excel

vs. Excel Link

Information for International Users About Windows regional settings
(p. 1-22)

1 Getting Started

1-2

What Is Excel Link?

Excel® Link is a software add-in that integrates Microsoft Excel and MATLAB
in a Microsoft Windows®-based computing environment. It positions Excel as
a front end to MATLAB. By connecting Excel with the MATLAB workspace,
you can access the numerical, computational, and graphical power of
MATLAB from Excel worksheet and macro programming tools.

Excel Link lets you use Excel Link functions from an Excel worksheet or
macro to exchange and synchronize data between Excel and MATLAB,
without leaving the Excel environment. With a small number of functions to
manage the link and manipulate data, Excel Link is powerful in its simplicity.

Note The terms worksheet and spreadsheet are used interchangeably
throughout this document.

Excel Link supports MATLAB two-dimensional numeric arrays,
one-dimensional character arrays (strings), and two-dimensional cell arrays.
It does not work with MATLAB multidimensional arrays and structures.

Microsoft Excel MATLAB

Excel

Excel workspace | MATLAB workspace

Link

Macro

J\l f‘ A A A |
Handle

Worksheet Graphics SIMULINK
h 4) 4
Toolboxes MATLAB
Compiler

Installing Excel Link

Installing Excel Link

In this section...

“System Requirements” on page 1-3
“Installing Excel Link” on page 1-3
“Files and Directories Created by the Installation” on page 1-3

“Modifying Your System Path” on page 1-4

System Requirements

For information on hardware and software requirements for Excel Link, see
http://www.mathworks.com/products/excellink/requirements.html.

Excel Link requires MATLAB for Windows. For best results with MATLAB
figures and graphics, set the color palette of your display to a value greater
than 256 colors:

1 Click Start > Settings > Control Panel > Display.

2 Click the Settings tab. Choose an appropriate entry from the Color
Palette menu.

Installing Excel Link

Install Windows and Excel before you install MATLAB and Excel Link.

To install Excel Link, follow the instructions in the MATLAB installation
documentation. Select the Excel Link check box when you select MATLAB
components to install.

Files and Directories Created by the Installation

The Excel Link installation program creates the subdirectory under
matlabroot/toolbox/, where matlabroot is the directory where MATLAB is
installed on your system. The ex1link directory contains the following files:

e excllink.xla: The Excel Link add-in

® ExliSamp.xls: Excel Link samples described in this manual

1-3

http://www.mathworks.com/products/excellink/requirements.html

1 Getting Started

The installation also creates an Excel Link initialization file, exlink.ini, in
the appropriate Windows directory (for example, C: \Winnt).

Excel Link uses Kernel32.d11, which should already be in the appropriate
Windows system directory (for example, C: \Winnt\system32). If not, consult
your system administrator.

Modifying Your System Path

For Excel Link to function properly, you must add the following directories
to your system path. For more information on how to do this, consult your
Windows documentation or your system administrator.

¢ On all supported operating systems, add C: \MATLAB\bin to your path.

® On Windows 2000, add C:\MATLAB\bin, C:\Winnt\system, and
C:\Winnt\system32 to your path.

Configuring Excel Link

Configuring Excel Link

In this section...
“Configuring Excel to Work with Excel Link” on page 1-5

“Setting Excel Link Preferences” on page 1-6

Configuring Excel to Work with Excel Link

After you have installed Excel Link, you are ready to configure Excel. You
need to do these steps only once.

Note These instructions are for Excel 2003 and earlier versions. For
instructions on how to configure Excel 2007 to Work with Excel Link, see

The MathWorks Support Web site.

1 Start Microsoft Excel.
2 Click Tools > Add-Ins > Browse.

3 Find and select the Excel Link add-in excllink.xla under
matlabroot/toolbox/exlink.

Note Throughout this document the notation matlabroot represents the
MATLAB root directory, the directory where MATLAB is installed on your

system.

4 Click OK.

The Excel Link add-in loads now and with each subsequent invocation of
Excel.

Note the MATLAB Command Window button on the Windows taskbar.

& Etartl J L@ Microsaoft Excel | ok MATLAB Command 'Window | Ii—| Inbo:: - Micrasaft Cutlook

1-5

http://www.mathworks.com/support/solutions/data/1-4ICMMF.html

1 Getting Started

1-6

Note the Excel Link toolbar on your Excel worksheet.

Start Execute MATLAB

MATLAB command
£4 [Microsoft Excel - Book1

N File

d 2 d oA

Edit Wiew Insert |Format Tools Dath

EFHRYS S LIVEN &G

Start MATLAB
Function Wizard for
Excel Link

Window Hel

A - F |9 -

Feply with Chane

(=

!
startmatlab putmatrix getmatrix evalstring getfigure wizard preferences

Send data to Retrieve data
MATLAB from MATLAB

Excel Link is now ready for your use.

Setting Excel Link Preferences

Import current
MATLAB figure

Set MATLAB
Preferences

Use the Preferences dialog box to set Excel Link preferences. Click the
preferences button in the Excel toolbar to open this dialog box.

Configuring Excel Link

MATLAE Preferences x|

MATLAB

wwrw. athwarks.co

[Start MATLAE at Excel startup

MaTLAE current working direckory

| .

[™ Use MATLAE deskkop

[show MATLAE errors

r Force use of MATLAE cell arrays with
MLPUEMaLrix

™ Treat missing/empty cells as Mak
04 |

Preferences include:

e Start MATLAB when Excel starts (enabled by default) starts
MATLAB automatically when Excel starts.

¢ MATLAB current working directory enables you to specify the current
working directory for your MATLAB session at startup.

¢ Use MATLAB desktop starts the entire MATLAB desktop, including
the current directory, workspace, command history and command window
panes, when Excel starts.

¢ Force use of MATLAB cell arrays with MLPutMatrix enables you to
set the MLPutMatrix function to use cell arrays for transfer of data between
Excel Link and MATLAB.

¢ Treat missing/empty cells as NaN sets data in missing or empty cells to
NaN or zero.

1 Getting Started

Starting and Stopping Excel Link

In this section...

“Automatically Starting Excel Link” on page 1-8
“Manually Starting Excel Link” on page 1-8
“Connecting to an Existing MATLAB Session” on page 1-8

“Stopping Excel Link” on page 1-9

Automatically Starting Excel Link

When installed and configured according to the instructions in “Configuring
Excel Link” on page 1-5, Excel Link and MATLAB automatically start when
you start Excel.

Manually Starting Excel Link
To start Excel Link and MATLAB manually from Excel:

1 Click Tools > Macro.
2 Enter matlabinit into the Macro Name/Reference box.

For more information about the matlabinit function, see Chapter 3,
“Functions — By Category”.

3 Click Run.

Watch for the MATLAB Command Window button on the Windows taskbar.

I Etartl J L@ Microsaft Excel | ok MATLAB Command Window | I_J-I Inbio:: - Micrasaft Cutlook

1-8

Connecting to an Existing MATLAB Session

To connect a new Excel session to an existing MATLAB process, you must
start MATLAB with the /automation command-line option. The /automation
option starts MATLAB as an automation server. The MATLAB Command
Window is minimized, and the MATLAB desktop is not running.

Starting and Stopping Excel Link

To add the /automation option to the command line:

1 Right-click your shortcut to MATLAB.
2 Select Properties.
3 Click the Shortcut tab.

4 Add the string /automation in the Target field. Remember to leave a
space between matlab.exe and /automation.

5 Click OK.

Stopping Excel Link
¢ To stop both Excel Link and MATLAB, stop Excel as you normally would.
Excel Link and MATLAB both stop when you stop Excel.

e To stop MATLAB and Excel Link and leave Excel running, enter
=MLClose() into an Excel worksheet cell. You can use the MLOpen or
matlabinit functions to restart Excel Link and MATLAB manually.

1-9

1 Getting Started

About Functions

1-10

In this section...

“How Excel Link Functions Differ from Microsoft Excel Functions” on page
1-10

“Types of Excel Link Functions” on page 1-10

“Using Worksheets” on page 1-11

“Working with Arguments in Excel Link Functions” on page 1-13
“Using the MATLAB Function Wizard for Excel Link” on page 1-13

“Create Macros for Excel Link Functions” on page 1-17

How Excel Link Functions Differ from Microsoft Excel
Functions

¢ Excel Link functions perform an action, while Microsoft Excel functions
return a value. Keep this distinction in mind as you use Excel Link.

¢ Excel Link function names are not case sensitive; that is, MLPutMatrix and
mlputmatrix are the same.

e MATLAB function names and variable names are case sensitive; that is,
BONDS, Bonds, and bonds are three different MATLAB variables. Standard
MATLAB function names are always lowercase; for example, plot(f).

Note Excel operations and function keys may behave differently with Excel
Link functions.

Types of Excel Link Functions

Excel Link provides functions to manage the link and to manipulate data
between Excel and MATLAB without your ever needing to leave the Excel
environment. You can invoke functions as worksheet cell formulas or in
macros. With Excel Link, Microsoft Excel becomes an easy-to-use data-storage
and application-development front end for MATLAB, which is a powerful
computational and graphical processor.

About Functions

Excel Link provides two types of functions: link management functions and
data management functions.

Link management functions initialize, start, and stop Excel Link and
MATLAB. Any link management function other thanmatlabinit can be
invoked as a worksheet cell formula or in macros. This function must be
invoked from the Excel Tools Macro menu or in macro subroutines.

Data management functions copy data between Excel and MATLAB and
execute MATLAB commands from Excel. Any data management function
other than MLPutVar and MLGetVar can be invoked as a worksheet cell
formula or in macros. These functions can be invoked only in macros.

For more information about Excel Link functions, see Chapter 3, “Functions
— By Category”.

Using Worksheets

Entering Functions into Worksheet Cells

Excel Link functions expect Al-style worksheet cell references; that is,
columns designated with letters and rows with numbers. This is the default
reference style. If your worksheet shows columns designated with numbers
instead of letters:

1 Click Tools > Options.
2 Click the General tab.

3 Under Settings, clear the R1C1 reference style check box.

Enter Excel Link functions directly into worksheet cells as worksheet
formulas. Begin worksheet formulas with + or = and enclose function
arguments in parentheses. The following example uses MLPutMatrix to put
the data in cell C10 into matrix A:

=MLPutMatrix("A", C10)

For more information on specifying arguments in Excel Link functions, see
“Working with Arguments in Excel Link Functions” on page 1-13.

1-11

1 Getting Started

1-12

Note Do not use the Excel Function Wizard, as it can generate unpredictable
results.

After an Excel Link function successfully executes as a worksheet formula,
the cell contains the value 0. While a function is executing, the cell may
continue to show the formula you entered. To change the active cell when an
operation completes, click Excel Tools Options > Edit > Move Selection
after Enter. This provides a useful confirmation for lengthy operations.

Automatic Calculation Mode Vs. Manual Calculation Mode
Excel Link functions are most effective in automatic calculation mode. To
“automate” the recalculation of an Excel Link function, add to it some cell
whose value changes. In the following example, the MLPutMatrix function
reexecutes when the value in cell C1 changes:

=MLPutMatrix("bonds", D1:G26) + C1

Note Be careful not to create endless recalculation loops.

To use MLGetMatrix in manual calculation mode, enter the function into a
cell, press F2; then press Enter to execute it.

Note Pressing F9 to recalculate a worksheet affects only Excel functions. It
does not operate on Excel Link functions.

If you use explicit cell addresses in a function and then later insert or delete
rows or columns, or move or copy the function to another cell, you need to edit
the function arguments to reference the new cell address. Excel Link does not
automatically adjust cell addresses in functions.

About Functions

Working with Arguments in Excel Link Functions

This section describe tips for managing variable-name arguments and
data-location arguments in Excel Link Functions.

Variable-name Arguments
® You can directly or indirectly specify a variable-name argument in most
Excel Link functions.

= To specify a variable name directly, enclose it in double quotation marks;
for example, MLDeleteMatrix("Bonds").

= To specify a variable name as an indirect reference, enter it without
quotation marks. The function evaluates the contents of the argument to

get the variable name. The argument must be a worksheet cell address
or range name.

Data-location Arguments

® A data-location argument must be a worksheet cell address or range name.

* Do not enclose a data-location argument in quotation marks (except in
MLGetMatrix, which has unique argument conventions).

® A data-location argument can include a worksheet number; for example,
Sheet3!B1:C7 or Sheet2!0OUTPUT.

Note You can use virtually any special character as part of a worksheet
name if you embed the sheet name within single quotation marks (' ")
when referencing it in MLGetMatrix or MLPutMatrix.

Using the MATLAB Function Wizard for Excel Link

The MATLAB Function Wizard for Excel Link allows you to browse MATLAB
directories and run functions from within Excel.

1-13

1 Getting Started

List functions available Display list of

for specified MATLAB working directories Refresh
directory/category and available function categories directory/category list
MATLAE Function Wizard x|

MATLAB

wwew.mathworks.com

1. Seldct a cakeqory:

matlabelmat - Elementary matrices and matrix manipulatinj lUpdate

2. Select a Function:

pascal ﬂ

ermuke
F'i 1

3. Select a function signature:

RANDM,M,P, ...}

RAND{METHOD)

RAND{METHOD, 5)

RAND(M) |

Function HelIr:

RAMD Umiformly distribubed pseudo-random numbers, -
R = RAMDCN rekurns an M-bey-M matrix conkaining pseudo-randaom values
I

same sge as b,
[
(K,
Select function signature Display help for given
and enter formula into function signature

specified spreadsheet cell

1-14

About Functions

Use The MATLAB Function Wizard for Excel Link to do the following:

1 Display a list of all MATLAB working directories and function
categories

All directories or categories in the current MATLABPATH display in the
Select a category field. Click an entry in the list to select it. Each
entry in the list displays as a directory path plus a description read from
the Contents.m file in that directory. If no Contents.m file is found, the
directory/category display notifies you as follows:

finance\finsupport -(No table of contents file)
To refresh the directory/category list, click the Update button.

2 Choose a particular directory or category, and list functions
available for that directory or category

After you select a directory or category, available functions for that
directory or category display in the Select a function field. Click a
function name to select it.

3 Parse a specified function signature and enter a formula into the
current spreadsheet cell

After you select a function, available function signatures for the specified
function display in the Select a function signature field. Click a function
signature to display the Function Arguments pane.

1-15

1 Getting Started

1-16

Specify cell for function output
(optional)

www. athwarksxam

—

. Select a category:

rnatlabhelmat - Elementary Watrices and rmakrix manipulatinj

==l -1 i1 L ey Bl Funiction Arguivents

pascal

Scroll through list of
function input arguments

x|

pdate J
x|

permute

3. Select a function si
Cptional oukput cell{s): |

RAND(M, BP0
RAND{METHOD
RAND{METHOD, 5)
RAND()

RANDIM, M)

-

unction Help:

RAMD Uniformly ok
R = RAMNDIN) re

drawn From a ur.

ar RAMNDIM,M]) returns an M-by-M matrix, RAMDE, MNP, .0 or

RAMDM,MLP, . T3 returns an M-by-M-by-P-by-... array, RARD

no arquments returns a scalar, RAMDISIZE(AY) returns an array
same size as A,

Double-click function signature
to display Function Arguments pane ...

Enter function arguments

About Functions

By default, the output of the selected function appears in the current
spreadsheet cell using the Excel Link function MATLABFCN. In the following
example, the output displays in the current spreadsheet cell and generates
a MATLAB figure:

=matlabfcn("plot",Sheet1!$B%$2:$D%4)

If you specify a target range of cells using the Optional output cell(s)
field in the Function Arguments dialog box, the selected function appears in
the current spreadsheet cell using MATLABSUB, with an additional argument
to indicate where to write the function’s output. In the following example,
the target cell is B2 and the input to the rand function comes from A2:

=matlabsub("rand","Sheet1!B2",Sheet1!A2)
4 Display online help headers for functions

After you select a function signature from the Select a function
signature field, the help header for the specified function signature
appears in the Function Help field.

Create Macros for Excel Link Functions

To create macros that use Excel Link functions, you must first configure Excel
to reference the functions from the Excel Link add-in. Use the following
steps to do this.

1 From the Visual Basic environment, click Insert > Module.
2 When the Module pane opens, click Tools > References.

3 In the References dialog box, select the ExcelLink check box and click OK.

Note In macros, leave a space between the function name and the first
argument; do not use parentheses.

1-17

1 Getting Started

1-18

Example: Using MLGetMatrix in a Macro Subroutine

To use MLGetMatrix in a macro subroutine, enter MatlabRequest on the line
after MLGetMatrix. MatlabRequest initializes internal Excel Link variables
and enables MLGetMatrix to function in a subroutine. For example:

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest

End Sub

Note Do not include MatlabRequest in a macro function unless the macro
function is called from a subroutine.

Example: Running Excel Link Functions from the Visual Basic
Editor

In this example, you use VBA code to execute MATLAB commands, send
MATLAB data to Excel, and display the results in an Excel dialog box.

Follow these steps to run this example:

1 Start Excel.

2 Initialize MATLAB by clicking the startmatlab button in the Excel Link
toolbar or by running the matlabinit function.

3 Enable the Excel Link Add-in:
¢ Click Tools > Add-ins.
¢ Select the Excel Link 3.0 for use with MATLAB check box.
¢ Click OK.

4 Enable Excel Link as a Reference in the Excel Visual Basic Editor:
e (Click Tools > Macro > Visual Basic Editor.

¢ In the Visual Basic Editor window, click Tools > References.

About Functions

¢ In the References — VBAProject dialog box, select the ExcelLink check
box.

¢ Click OK.

5 In the Visual Basic Editor, create a new module. To do this, right-click
the Microsoft Excel Objects folder in the Project — VBAProject tree
browser and select Insert > Module from the context menu.

6 Enter the following code into the module window:

Option Base 1
Sub Method1 ()

MLShowMatlabErrors "yes"

"'"'To MATLAB:

Dim Vone(2, 2) As Double "Input
Vone(1, 1) =1

Vone(1, 2) = 2

Vone(2, 1) = 3

Vone(2, 2) = 4

MLPutMatrix "a", Range("A1:B2")
MLPutVar "b", Vone
MLEvalString ("c = a*b")
MLEvalString ("d = eig(c)")

"'"'"From MATLAB:

Dim Vtwo As Variant "Output
MLGetVar "c", Vtwo

MsgBox "c is " & Vtwo(1, 1)

MLGetMatrix "b", Range("A7:B8").Address
MatlabRequest

MLGetMatrix "c", "Sheet1!A4:B5"
MatlabRequest

Sheets("Sheet1").Select

Range("A10").Select
MLGetMatrix "d", ActiveCell.Address

1-19

1 Getting Started

MatlabRequest

End Sub

7 To run the code, press F5 or click Run > Run Sub/UserForm.

The following dialog box appears.

Microsoft Excel IIET

cisQ

8 Click OK to close the dialog box.

Dates

Default Excel date numbers represent the number of days that have passed
since January 1, 1900; for example, May 15, 1996 is represented as 35200
in Excel.

However, MATLAB date numbers represent the number of days that have
passed since January 1, 0000, so May 15, 1996 is represented as 729160 in
MATLAB. Therefore, the difference in dates between Excel and MATLAB is a
constant, 693960 (729160 minus 35200).

To use date numbers in MATLAB calculations, you must apply the 693960
constant as follows:

e Add it to Excel date numbers that are read into MATLAB.
e Subtract it from MATLAB date numbers that are read into Excel.

Note If you use the optional Excel 1904 date system, the constant is
695422,

1-20

Dates

Note Dates are stored internally in Excel as numbers and are not affected
by locale.

1-21

1 Getting Started

Information for International Users

This document uses Excel with an English (United States) Windows
regional setting for illustrative purposes. If you use Excel Link with a
non-English (United States) Windows desktop environment, certain
syntactical elements may not work as illustrated. For example, you may have
to replace the comma (,) delimiter within the Excel Link commands with a
semicolon (;) or other operator.

Please consult your Microsoft Windows documentation to determine which
regional setting differences exist among various international versions.

1-22

Solving Problems with
Excel Link

About the Examples (p. 2-2) How to run these examples online in
Excel Link

Data Regression and Curve Fitting Builds a mathematical model of a
(p. 2-3) data set and uses an Excel worksheet
to organize and display the data

Data Interpolation (p. 2-9) Uses an Excel worksheet to organize
and display input data and the
interpolated output data

Stock Option Pricing Using the Uses Excel Link, Financial Toolbox,

Binomial Model (p. 2-13) and the binomial model to price
options

Calculating and Plotting the Uses Excel Link and Financial

Efficient Frontier of Financial Toolbox to analyze three portfolios,

Portfolios (p. 2-16) using rates of return for six time
periods

Bond Cash Flow and Time Mapping Uses Excel Link and Financial

(p. 2-20) Toolbox to compute a set of cash flow
amounts and dates, given a portfolio
of five bonds

2 Solving Problems with Excel Link

About the Examples

The following sections show how Microsoft Excel, Excel Link, and MATLAB
work together to solve real-world problems.

These examples are included with Excel Link. To run them:
1 Start Excel, Excel Link, and MATLAB.
2 Navigate to the directory matlabroot/toolbox/exlink/.

3 Open the file Ex1iSamp.x1ls

4 Execute the examples as needed.

Note Examples 1 and 2 use MATLAB functions only. Examples 3, 4, and
5 use functions in Financial Toolbox. Financial Toolbox in turn requires

Statistics Toolbox and Optimization Toolbox.

2-2

Data Regression and Curve Fitting

Data Regression and Curve Fitting

In this section...

“Worksheet Version” on page 2-3

“Macro Version” on page 2-6

Regression techniques and curve fitting attempt to find functions that
describe the relationship among variables. In effect, they attempt to build
mathematical models of a data set. MATLAB provides many powerful yet
easy-to-use matrix operators and functions to simplify the task.

This example demonstrates both data regression and curve fitting. It also
executes the same example in a worksheet version and a macro version. The
example uses Excel worksheets to organize and display the data. Excel Link
functions copy the data to MATLAB and execute MATLAB computational
and graphic functions. The macro version also returns output data to an
Excel worksheet.

Worksheet Version

1 Click the Sheetl tab on the Ex1iSamp.x1ls window. The worksheet for
this example appears.

Solving Problems with Excel Link

24

X Microsoft Excel - ExIiS amp.xls
5] Fle Edt ¥ew Insert Format Took Data Window Help =1
el SRV bR LL AR 4| 10 | [2)
Arial ~w - B I US=E=BH %%, WG EE DA
putmatrix getmatrix ewalstring) @ B
ES j =| =MLPutiMatrix("data” DATA)
A B C D E F G H Jd K L M T
1 |Regression and Curve Fitting |
2
3 DATA Excel Link Functions
4) 207 1325 1. Transfer the data to MATLAB.
g 17 90 533 I D!<== MLPuthatrix("data" DATA)
(5] 43 180 1013
7 4 187 1163] 2. Set up data for regression
g 177 552 5326 0 === MLEvalString("y = data(: 3)")
E] 57 354 2043 0 <== MLEvalString("e = ones(length(data 1)")
10 20 10 502 0 <== MLEwalString("A = [e data(:,1:2)]")
11 13 91 832
12 17 86 543 3. Compute regression coefficients
13 35 180 1134] 0 <== MLEvalString("beta = Aly")
14 25 136 786
15 17 84 495 4. Calculate regressed result
16 23 102 B35 0 <== WLEvalString("fit = A"beta")
17 2 148 913
18 40 292 1591 5. Cornpare original data with regression results.
19 25 126 571 0 <== MLEvalString("[y k] = sort(y)")
20 17] 521 0 <== MLEwalString("fit = fit(k)"}
21 45 235 1319 0 <== MLEvalString('n = size(data 1)")
22 I 204 1035]
23 15 [et] 458 B. Use MATLAB's polynomial solving functions for another curve fit
24 [363 2904 0 === MLEvalString("[p,3] = polvft(l:n.y"5)"
25 BB 300 2008 0 <== MLEvalString("newiit = polyval(p,:n 5)")
26 39 161 935 —
27 111 459 3282 7. Plot curves and add legend
28 16 80 476 0 «== MLEvalString("plot(1:n,y,bo’ 1:n fit,r'1innewfit '), legend(data’ it' newfit]")
ﬂ ¥ [M, Sheet1 [SheetZ 4 Sheet3 [Sheetd j Sheets / lol | .||L
Ready MU

The worksheet contains one named range: A4:C28 is named DATA and
contains the data set for this example.

Make E5 the active cell. Press F2; then press Enter to execute the Excel
Link function that copies the sample data set to MATLAB. The data

set contains 25 observations of three variables. There is a strong linear
dependence among the observations; in fact, they are close to being scalar
multiples of each other.

Move to cell E8 and press F2; then press Enter. Repeat with cells E9 and
E10. These Excel Link functions tell MATLAB to regress the third column
of data on the other two columns. They create a single vector y containing
the third-column data, and a new three-column matrix A consisting of a
column of ones followed by the rest of the data.

Execute the function in cell E13. This function computes the regression
coefficients by using the MATLAB backslash operation to solve the
(overdetermined) system of linear equations, A*beta = y.

Data Regression and Curve Fitting

5 Execute the function in cell E16. MATLAB matrix-vector multiplication
produces the regressed result (fit).

6 Execute the functions in cells E19, E20, and E21. These functions compare
the original data with fit; sort the data in increasing order and apply
the same permutation to fit; and create a scalar for the number of
observations.

7 Execute the functions in cells E24 and E25. Often it is useful to fit a
polynomial equation to data. To do so, you would ordinarily have to set up
a system of simultaneous linear equations and solve for the coefficients.
The MATLAB polyfit function automates this procedure, in this case for a
fifth-degree polynomial. The polyval function then evaluates the resulting
polynomial at each data point to check the goodness of fit (newfit).

8 Execute the function in cell E28. The MATLAB plot function graphs the
original data (blue circles), the regressed result fit (dashed red line), and
the polynomial result (solid green line); and adds a legend. Data plots.

[Jriguet ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

Ded& h|RaM®|(E| 0B O

2200

oml b

1800 |
1600 |- [P

1400 P A

1200 O
1000} o},‘b i
g0 | o J]
BoOf . .

qol ¢ Y]

200
0

m_
=
o
S|

25

2 Solving Problems with Excel Link

2-6

Since the data is closely correlated but not exactly linearly dependent, the
fit curve (dashed line) shows a close, but not an exact, fit. The fifth-degree
polynomial curve, newfit, represents a more accurate mathematical model

for the data.

When you finish this version of the example, close the figure window.

Macro Version

1 Click the Sheet2 tab on Ex1iSamp.x1s. The worksheet for this example

appears.
X Microsoft Excel - ExliSamp_xls _ O] x|
ﬁﬁile Edit Wiew Insett Format Tools Data Window Help -Iﬁlllﬂ
ﬁﬂIé&JHﬁ ‘ﬁ@"ﬂ-ﬂ- %%ﬂz F Z$Al|ﬂg.@‘mw v|@
arial -1Uv1]1(1‘ ‘35/,00»0*- G- B A -
putmatrix getmatrix evalstring | ” [Bl | E '}a g |
A - = =CureFit(DATA,"A7" "BF" "CT")
A [8 [¢ [o [E [T F [& [H [T 1T [T T 3
| 1 |Regression and Curve Fitting Macro
| 2 |{See Madule 1)
E
4 Ol<== CurveFit{DATA,"A7","B7","C7")
5
B y fit newfit
7]
6
i
0]
11
2]
13|
|12
15
16
17
18
19
20
121,
=
23]
|24
25
26,
|27
28
E
E
31
4411 (b1, Sheet! b, Sheet2 Shest | Sheetd [Sheers | _|JJ
Ready H_lil_!_lml_!_l_ Y

2 Make cell A4 the active cell, but do not execute it yet.

Data Regression and Curve Fitting

Cell A4 calls the macro CurveFit, which you can examine from the Visual
Basic environment.

4 Microsoft Visual Basic - ExliSamp.«ls - [Modulel [Code]]

|4 Fie Edt view Insert Format Debug Run Tooks window Help _l@] x|

||sg 2o, o820 HI&\» ||-|\"_'UCEE§¢E|E@W@%|

Canp (General) ~| [ipeciarations)
mE e | el

B Excllink {excllink.xla)

= 8% Exlisamp (ExliSamp.xls)
=124 Wicrosoft Excel Objects

heetl (sheet1) MLPutMatrix "data”, abata

heet2 (Sheetz) MLEvalString "y = data(:,3)"

heet3 (sheetz) MLEvalString length(y)"

heet4 (sheet+) MLEvalString ones (n,1)"

heets (Sheets) MLEvalString "k = [e data(:,1:2)1"

Thistworkbook MLEvalString "beta = Ayvy"

. 1

I>II;

Function CurveFit (aData, sTargetl, sTarget2, sTargetd)
'MATLAR regression and curve firting macro

(=5 Modules MLEvalString "fit = Asbeta”
P 4tiodule1d HLEvalString "[y,k] = sort(yl"
(= References MLEvalString "fit = fit (k)"
B Reference to exclink.xla MLEvalString "[p,5] = polyfit(i:n,v',5)"

HLEvalString "nevfic = polyval(p,l:n,S)'"
BLEvalString "plot(l:n,y,'bo', l:n,fit,'r:', 1in, nevtic, 'g'); legend('daca’, '£ic', 'nevfic') "
HLGetMacrix "y", sTargetl

Fro Todulel
[Modulet rodule | MLGetMatrix "£it", sTargetZ

T |Cateanized| MLGetMatrix "nevfit", sTargetd
mMudu\El End Function

x
[<Ready= Expression Valug Type Context B
Expression [value [Type

3 While this module is open, click Tools > References. In the References
dialog box, make sure that the excllink.x1la check box is selected. If not,
select the check box and click OK.

4 In cell A4 of Sheet2, press F2; then press Enter to execute the CurveFit
macro. The macro executes the same functions as the worksheet example
(in a slightly different order), including plotting the graph. In addition, it
uses the MLGetMatrix function in the CurveFit macro to copy the original
data y (sorted), the corresponding regressed data fit, and the polynomial
data newfit, to the worksheet.

2-7

2 Solving Problems with Excel Link

2-8

icrosoft Excel - ExliSamp.xls

ﬁﬁile Edit “iew Insert Format Tools Data Window Help

DE2H &SRy 2R o o

€ =LA led u- @

aria - -/B U B s %, %8 - DA
putmatrix getmatriz evalstring | ” >y & Il | E '}? M |
a5 - =
A T8 [¢ [0 [T E [F [& [H [T T J [3

| 1 |Regression and Curve Fitting Macro
| 2 |(See Module 1)

8

4 0 <== CureeFit(DATA,"A7" "B7","C7")

5 1

B v fit newfit
| 7 | 458 379.0475 | 402.008
|8 | 476 430.3099 | 515.8528
|8 | 455 4624722 549.7114
| 10| 521 47202221 543.0184
| 11| 532 501.7971 | 524.5499
| 12| 533 4767973 | 513775
| 13| 543 467 2472 | 522.2081
| 14| 602 570.5960 | 554.761
| 18| B35 B41.1212 | 611.0947
| 16| 671 7436461 | BB6.9715
| 17| 766 TE7.5211 | 775.6072
|18 913 77355089 | 869.023
| 19| 538 1143.781 | 959.3974
| 20| 1013 | 1279593 1040.419
| 21| 1038]1201.219] 1108.636
| 22| 1134 | 1098695 1164.812
| 23| 1163 | 1251.081 | 1215.276
| 24| 1319 | 1478743 | 1273.275
|26 1325 | 1163.147 | 1360.322
| 26| 1591 | 14789157 | 1507 567
| 27| 2008 |2086.177| 1757.09
| 28| 2043 | 2011.592]2163.350
| 29| 2904 | 2666224 | 2794 475
| 30| 3282 |3483.345|3733.586 -
31| 5326 | 5197796 | 5060.215
4 41 » [P Sheetl b, Sheet? { Gheets £ Sheetd § Sheets 14l | JJJ
Ready 1 Bl B

When you finish the example, close the figure window.

Data Interpolation

Data Interpolation

Interpolation is a process for estimating values that lie between known data
points. It is important for applications such as signal and image processing
and data visualization. MATLAB provides a number of interpolation functions
that let you balance the smoothness of data fit with execution speed and
efficient memory use.

This example uses a two-dimensional data-gridding interpolation function
on thermodynamic data, where volume has been measured for time

and temperature values. It finds the volume values underlying the
two-dimensional, time-temperature function for a new set of time and
temperature coordinates.

The example uses an Excel worksheet to organize and display the original
data and the interpolated output data. Excel Link functions copy the data to
and from MATLAB, execute the MATLAB interpolation function, and invoke
MATLAB graphics to display the interpolated data in a three-dimensional
color surface.

1 Click the Sheet3 tab on Ex1iSamp.x1ls. The worksheet for this example
appears.

2 Solving Problems with Excel Link

X Microsoft Excel - ExliSamp xls

Ready

ﬁ Eile Edit “iew Insert Format Tools Data Window Help []
DERESRY tRA o-- (@€ =& 130 SB[= -0 & rom
el -0 -|B 7@ B s %, 4
putmatrlx getmah’lx (=] Ish’lng ‘
£33 =l =| =MLPutMatrix("Labels", Ad:C4)
A [B [c [o [E [F [& [H] [T kK [L [™ N | o [P [a [mR [s [T]
| 2 |Original Data Interpolated ¥alues
| + |Time Temp Yolume
[& 00z 6B.00 250408 Temp
B 0050 68.05 253507 Time 68.0 685 63.0 B35 700 705 ral 715 720 prdi) 730 T35 740 745 750
[7 0075 £2.07 2662.91 0.025)
[& 0100 B209 257674 0.0
[9 0125 £28.20 260818 0.075)
[10 0.160 B350 262868 o
L 0178 [:3: 268138 0125}
[12 0200 £3.22 271208 0.15)
[13 0,225 TO0E 27ETE2 0175|
[14 0.250 023 2216.54 02|
[15 0275 TOEY 282437 0.225)
[1B 0200 T08E 28TIES 0.28]
[17 0325 T 2esz20 0279
[18 0350 7144 289643 0.3
ER 0375 82 230207 0.325)
[20 0400 7233 232004 0.35]
[21] 0425 T2E5 232935 0.375)
[22 | 0450 TI46 293423 04|
[23 0475 T38G 293865 0.425)
[24 0500 422 30293 0.45]
[25 0525 437 309312 0.475)
[28 0550 7455 30,01 0.5|
[27 | 0575 T4ET 3179.24 0.525)
[28 0800 T2 o) 0.5
[23 0625 0 415 0575
| 20| [
| 31 |Excel Link Functions
| 32 1 Transfer original datato MATLAB.
33
Ex
| |
[36 0 ¢== MLPutfatis("¥" CH:C24)
| |
| 3% | 2. Transfer interpolation data points to MATLAE.
[33 0 ¢== MLPutMatris["k 2" EF-E30]
[40 0 == MLPutMatris["Ta" FE:TE]
41
| 42 | 3. Execute MATLAE data interpolation functicn.
[42| 0/ == MLEvalString("[%], TL, ¥I] = griddata[%,T,¥,¥a,Ta, invdist’)"]
4“4
| 45 | 4. Transpose cutput data matris and transfer data to Encel.
| 46 | 0/ ¢== MLEwalString["V = ¥I5")
[47 0 ¢== MLGetMatris["1v","F 7"
| #=
| 43 5. Plotinterpolated data and label the figure.
[50| 0/ ¢z= MLEwaIString["surf[x, T1, ViJtitle['Interpolsted DataJxlabel[L abelz|1} Jylabel[L abels{2}zlabel[L abels{3)arid on”)
51
52
14 4[» [1% Sheetl £ Sheetz % Sheet3 / Sheetd f SheetS £ Sheets / 4] |

[e e |

The worksheet contains the measured thermodynamic data in cells A5:A29,
B5:B29, and C5:C29. The time and temperature values for interpolation
are in cells E7:E30 and F6:T6, respectively.

2 Make A33 the active cell. Press F2; then press Enter to execute the Excel
Link function that passes the Time, Temp, and Volume labels to MATLAB.

3 Make A34 the active cell. Press F2; then press Enter to execute the Excel
Link function that copies the original time data to MATLAB. Move to

2-10

Data Interpolation

cell A35 and execute the function to copy the original temperature data.
Execute the function in cell A36 to copy the original volume data.

4 Move to cell A39 and press F2; then press Enter to copy the interpolation
time values to MATLAB. Execute the function in cell A40 to copy the
interpolation temperature values.

5 Execute the function in cell A43. griddata is the MATLAB two-dimensional
interpolation function that generates the interpolated volume data using
the inverse distance method.

6 Execute the functions in cells A46 and A47 to transpose the interpolated
volume data and copy it to the Excel worksheet. The data fills cells F7: T30,
which are enclosed in a border.

E F | G i [1 [3 | k¥ [L [m [u [o [p | @ [r s T

2
[3 | Interpolated Yalues
4|
|5 | Temp
[[6 [Time 88.0 65.5 69.0 69.5 70.0 705 710 M5 720 725 730 735 74.0 745 75.0
| 7| 0025| 250408 263815 270732 2750.08) 278491 285119 291162 294067 295140 298317 300006 3006.32 3041.01) 312578 302655
[a | 005 2507.26| 263575 270479 274666 277996 284635 290700 293498 295507 297569 299364 2999.35 3034.49 312643 303668
(9| oo7s| 251083 263345 270256 274362 277540 284184 200275 202964 204508 207051 285750 299260 302708 312607 304632
[0 | 01| 2513893 2631.34| 270070 274098 277127 083766 289358 292466 299343 206465 206167 2986.08 302149 3127.33 305577
[41| 0a125| 251514 260960 2699.97| 2738.77| 276761 263383 289540 292007 293814 295914 297616 2979.83 301506 312771 306502
[12 | 045| 251431| 2628558 260502 273600 276440 283038 289231 | 201587 293323 205307 207099 207386 300870 312795 307408
[43| 0.475| 251184 262856 269725 273566| 27200 282731 288959 291208 292872 294917 206617 296821 300247 312511 308283
[14 | 02| 250810 2629.91| 269567 2734.79) 276022 262458 200726 290872 292462 294475 296171 296209 299539 312821 3091.57
[45| 0225| 250337 263132 269688 273437| 275024 282257 288520 290580 202096 204073 2957 B5 2957.93) 299050 312825 3099.99
|8 | 025 249784 263283 268728 273442 273940 282105 288365 2080334 291776 293713 295397 2953.36 285486 3128.24 310848
[47 | 0275| 249156 263454 2698.05 2734.91| 275975 262023 288243 290133 291502 293397 295071 294820 297952 312848 311614
[18 | 03| 248492 2636.35| 2699.18| 27as8s| 27s112| 282016 288155 280979 291278 203126 294788 294548 207453| 312807 312383
|18 | 0325| 247771 263800 270064 273722| 276300 282051 288106 289872 291104 202903 2084547 294221 296096 312790 3.6
[20 | 035 247007 263954 270241 273901 276559 282211 288097 2R9813 290952 290729 294352 2939.43 296559 312766 313836
[21| 0375| 246208 264083 270445 274113| 276854 262398 288179 289800 290813 292605 234201 293716 296239 3127.30 314513
|22 | 04| 245370 264215 270575 274375 277180 282633 288203 269834 200897 202533 204086 293542 295955 312673 315166
[23| 0425| 244503 2643.15 270926 274667| 277562 282913 288320 28996 290834 202514 2084037 293425 295745 312607 SIS
[24 | 045 243507 264394 271187 274992 277966 283232 208478 290044 291023 292548 294024 93367 295616 312509 316342
|26 | 0475| 242652 264448 271454 2753.45| 275405 283555 280678 200219 201163 202634 204057 293371 205574 312383 316863
[26 | 05| 241731 264477 2717.84| 275732 078673 283975 209919 290440 201352 202771 294136 2939.34| 295623 312248) 3IHTIH
[27| 0s525| 2407.54) 264480 272095 2761.44| 279367 2684401 289199 290704 291589 292957 294261 293555 295760 312127 317739
[28 | 055 239751 264455 272404 276570 2798ST| 284855 289519 201011 2091872 203150 204430 203730 205085 312088 318074
(29| 0575| 2367.24) 264405 272739 277T037| 290431 285338 289877 291360 292199 293465 2094643 2039.57 296289 312168 318321
[30 | 06| 237671 264325 273067 277514 280007 285540 200271 201748 202567 203780 204603 294235 296666 312341 318453

an

7 Execute the function in cell A50.

MATLAB plots and labels the interpolated

data on a three-dimensional color surface, with the color proportional to the
interpolated volume data.

2-11

2 Solving Problems with Excel Link

Drower -ioix

File Edit Wiew Insert Tools Desktop Window Help

D& kRame || 08| 5O

Interpolated Data

B8
Ternp L Time

When you finish the example, close the figure window.

2-12

Stock Option Pricing Using the Binomial Model

Stock Option Pricing Using the Binomial Model

Financial Toolbox provides several functions that compute prices, sensitivities,
and profits for portfolios of options or other equity derivatives. This example
uses the binomial model to price an option. The binomial model assumes that
the probability of each possible price over time follows a binomial distribution;
that is, that prices can move to only two values, one up and one down, over
any short time period. Plotting the two values, and then the subsequent two
values each, and then the subsequent two values each, and so on over time, is
known as building a binomial tree.

This example uses the Excel worksheet to organize and display input and
output data. Excel Link functions copy data to a MATLAB matrix, calculate
the prices, and return data to the worksheet.

Note This example requires Financial Toolbox.

1 Click the Sheet4 tab on Ex1iSamp.x1ls to open the worksheet for this
example.

2-13

2 Solving Problems with Excel Link

X Microsoft Excel - ExliSamp.xls M= |

B Fls Edt ¥iew Insert Format Took Dats Window Help ;Iiljl‘
DEE SRY | IBRI v~ e® =488 Bes -8
vl o - B U |EEEEs%, B8 EEL-D-A-
putmatrix getmatrix evalstring ‘ “ [| al ol |
05 - =| =MLPutMatrix('b", bindata)
[B | ¢ D | E [F [& [A [1 [o T K=
| 1 |Binomial Option Pricing Il
2
E bindata Excel Link Functions
| 4 Asset price, so $ 5200 1. Transfer data to MATLAB
|5 |Option exercise price, x | % 50.00 Ol=== MLPuthatrix("h", bindata)
| 6 Risk-free interest rate, r 10%|
| 7 |Time to maturity, t (yrs) | 0 41B667|=5/12 2. Execute MATLAB Financial Toolbox binomial option pricing function
[B |Time increment, dt 0.083333|=1/12 0 === MLEvalString("[p, o=binprice(b(1), b(2), b(3), b4), bE), bE), bFN")
[9 Muolatility, sig 0.4
[100 Call (1) or put (0], flag 0 3. Transfer output data to Excel.
[11] 0 === MLGetMatrix("p", "asset_tree”)
12 0 <== MLGetMatrix["a", "value_tree")
13
E Start_Pericd 1 Period2 Period3 Period 4 Perind &
| 15 |Asset price tree, p ()
|16
117
KEl
RE]
|20
|21
|22
| 23 |Option value tree, o ($)
|24
|25
|5
|27 |
|28
i o -

4" 4 [(W%, Sheetl f Sheet2 £ Sheets) Sheetd [Sheets /
Ready

I
[T [0 oM

7|

The worksheet contains three named ranges:

® B4:B10 named bindata. Two cells in bindata contain formulas:

- B7 contains =5/12

- B8 contains =1/12

® B15 named asset_tree.

® B23 named value_ tree.

2 Make D5 the active cell. Press F2; then press Enter to execute the Excel
Link function that copies the asset data to MATLAB.

3 Move to D8 and execute the function that computes the binomial prices,
then execute the functions in D11 and D12 to copy the price data to Excel.

The worksheet looks like this.

2-14

Stock Option Pricing Using the Binomial Model

B Fls Edt ¥iew Insert Format Took Dats Window Help =&l x|
Dl SRY 1R YA
Arial ~w -~ B I U|EE B|ls %, @ E LB A -
putmatrix getmatrix swalstring y ® al ol
| D13 - =
B C D E F G H | J K 3
1 |Binomial Option Pricing Tl
2
3 bindata Excel Link Functions
4 | Asset price, so $ 5200 1. Transfer data to MATLAB
& |Option exercise price, x | % 50.00 0 <== MLPutMatrix("b", bindata)
B Risk-free interest rate, r 10%|
7 | Time to maturity, t {yrs) | 0.416667|=5/12 2. Execute MATLAB Financial Toolbox binomial option pricing function
B Tirme increment, dt 0.083333|=1/12 0 === MLEvalString("[p, o=binprice(b(1), b(2), b(3), b4), bE), bE), bFN")
9 Walatility, sig 0.4
10 Call (1) or put [0), flag 0 3. Transfer output data to Excel.
" 0 === MLGetMatrix("p", "asset_tree”)
j 0 <== MLGetMatrix("0", "value_tree")
13
14 Starl_Period |_Penod 2. Period 3 Period 4 Perind 5
15 |Asset price tree, p ($) 52.000 SB35 B5409 735X 026527 92628
16 0 46329 52000 58365 65509 73.527
17 0 0 #1277 46329 52000 58365
18 0 0 0 36776 41.277 46.329
19 0 0 0 0 32785 36776
20 0 0 0 0 0 29192
21
22
23 Option value tree, o ($) 3.728 1.664 0.428 0 a 1]
24 0 5913 2964 0.876 1] 0
25 0 0 9.060 5.164 1.793 0
lz] 0 0 0 13224 8.743 3671
27 0 0 0 0 17235 13.224 ||
28 0 0 0 0 0 20.808
ﬂ ¥ [M Sheetl £ SheetZ 4 Sheet3 j, Sheetd { Sheels / |1l .||L
Ready (Y]

Read the asset price tree this way: Period 1 shows the up and down prices,
Period 2 shows the up-up, up-down, and down-down prices, Period 3 shows
the up-up-up, up-up, down-down, and down-down-down prices, and so on.
Ignore the zeros. The option value tree gives the associated option value for
each node in the price tree. The option value is zero for prices significantly
above the exercise price. Ignore the zeros that correspond to a zero in the

price tree.

4 Try changing the data in B4:B10 and reexecuting the Excel Link functions.
Note, however, that if you increase the time to maturity (B7) or change the
time increment (B8), you may need to enlarge the output tree areas.

5 When you finish the example, close the figure window.

2-15

2 Solving Problems with Excel Link

2-16

Calculating and Plotting the Efficient Frontier of Financial

Portfolios

MATLAB and Financial Toolbox provide functions that compute and plot
risks, variances, rates of return, and the efficient frontier of portfolios.
Efficient portfolios have the lowest aggregate variance, or risk, for a given
return. Excel and Excel Link let you set up data, execute financial functions
and MATLAB graphics, and display numeric results.

This example analyzes three portfolios, using rates of return for six time
periods. In actual practice, these functions can analyze many portfolios over
many time periods, limited only by the amount of computer memory available.

Note This example requires Financial Toolbox.

1 Click the Sheet5 tab on Ex1iSamp.x1s. The worksheet for this example
appears.

Calculating and Plotting the Efficient Frontier of Financial Portfolios

X Microsoft Excel - ExliSamp xls

Ready

EE\I& Edit “iew Insert Format Tools Data Wdindow Help

DEHSRY (BRI~ (&€ = & 43 MSH[v -[B & romt
arial “w -|B s o 55 %, ‘@3

putmatrix getmatrix evals\ring‘

415 | =] =ML Puthatrix("Labels", F3:G3)
A [B [c [D] E [F G | H [1 J K L [
1_|Paortfolio Efficient Frontier
[2] Global Corp. Bnd Small Cap
3 Rates of return Global Corp. Bnd Small Cap Risk ROR Weights
| 4 Mov-91[7.126% | 4.125% B8.375%
| Nov-92| 5.125% | 5125% 3.875%
| B | Mov-93| -1.375% 5750% 10.500%
7 Mov-94| 7.750% 6.000% 14.750%
[8 Nov-95| 8.250% | B.375% -3.625%
a Mov-96| 12.6256% 6125% 0.1256%
|10
]
12
| 13 |Excel Link Functions
1. Transfer data to MATLAB

5 0l=== MLPutMatrix('Labels", F3:G3)
[16 0 === MLPutMatrix'retseries", B4:09)
| 18 2. Execute MATLAB Financial Toolhox functions.
19 0/ === MLEvalString('[ret, cov] = ewstats(retzeries)")
| 20 0 === MLEvalString('[risk, ror, weights] = portopt{ret, cov, 200"

21
| 22 3. Transfer output data to Excel

23 0 === MLGethatrizrisk" "F 4"
| 24 0 <== MLGetMatri'ror', "G4")
|25 0 === MLGetMatriz{"weights", "H4")

26
| 27 4. Piot efficient frontier data and label the figure
| 28 | 0 === MLEvalString('partopt(ret, cov, 20); arid an; xabeliLabels{1}); viabeliLabels{2H")

29
|30
ED

32
=

34
Eq

36
I
ED

39
Kl

4
Faz]

I4| 4 » | p] Sheetl f Sheetz 4 Sheet3 f Sheet4)Sheets f Sheets 4] B

| e e

2 Make A15 the active cell. Press F2; then press Enter to execute the
Excel Link function that transfers the labels describing the outputs to
be computed by MATLAB.

3 Make A16 the active cell to copy the portfolio return data to MATLAB.

4 Execute the functions in A19 and A20 to compute the Financial Toolbox
efficient frontier function for 20 points along the frontier.

5 Execute the Excel Link functions in A23, A24, and A25 to copy the output
data to Excel.

The worksheet looks like this.

2-17

2 Solving Problems with Excel Link

X Microsoft Excel - ExliSamp xls

EE\I& Edit “iew Insert Format Tools Data Window Help
DEESRY|4BRY - A® = & 25| 08 H - -

aral o sBzu | %, W

@ ”}= | Prormpt ‘

putmatrix getmatrix evals\ring‘

425 | =| =ML GetMatrix("weights", "H4")
A [B [¢ D E [F G H 1 J K L]
1_|Paortfolio Efficient Frontier
[2] Global Corp. Bnd Small Cap
3 Rates of return Global Corp. Bnd Small Cap Risk ROR Weights
N Mov-91] 7.125% @ 4125% 0.730%| 5.643%| 0.3% 96.1% 35%
Z MNov-92| 5125% | 5124% 0760%| 5723% 40% B97% B.3%
| B | Mov-93] -1.375% 5750% 0.844%| 5.803%| T7% B33% 9.0%
7 Mov-94] 7.750% 6.000% 0.068%| 5.283%)| 11.3% 76.9% 11.8%
E MNov-95| 8.250% | B374% 1118%| 5964% 15.0% 705% 145%
a Mov-96] 12.6256% 6.125% 1.287%| 5.044%| 187% 64.0% 17.3%
[10| 1466%| 6124%| 223% 676E% 200%
[11] 1653%| 6204%| 260% 51.2% 228%
12 1.846%| 5.284%)| 297% 44.8% 2545%
EEXEEI Link Functions 2042%| B365% 333% 38.4% 283%
14 1. Transfer data to MATLAB. 2241%| 5.445%| 37.0% 310% MN1%
E 0 === MLPuiMatrix('Labels", F3.G3) 2.443%| BA525% 40.6% 256% 338%
16 0 === MLPutMatrix{'retseries”, B4:.D8) 2.646%| B5.605%| 443% 191% 36.6%
[17] 2850%| BEB5%| 480% 127% 39.3%
18 |2. Execute MATLAB Financial Toolhox functions. 3.055%| B.766% 51.6% 6.3% 42.1%
E 0 === MLEvalString("[ret, cov] = ewstats(retseries)") 3262%| BB4E% 55.0% 0.0% 45.0%
20 0 === MLEvalString('[risk, ror, weights] = portoptret, cov, 20)") 3620%| 6.926%) 41.3% 0.0% 58.7%
[21 4213%| 7.006% 275% 00% 725%
[2213, Transfer autput data to Excel 4955%| 7.0B6% 138% 00% B6.2%
23 0 === MLGetMatrix"risk", "F4") 5.791%| 7167%| 0.0% 0.0% 1000%
| 24 0 <== ML Gethatri'ror', "G4")
25 0l=== ML GetMatriz"weights", "H4")
2
| 27 4. Piot efficient frontier data and label the figure
| 28 | 0 === MLEvalString('partoptiret, cow, 200, grid on; xlabeliLabels{1}); viabeliLabels(2)"
29
|30
ED
32
=
34
Eq
36
I
ED
39
Kl
4
Faz]
14| 4| p |] Sheetl f Sheetz £ Sheetd f Sheet4) Sheets Sheeté (E1]
Ready [= [

The data describes the efficient frontier for these three portfolios: that set
of points representing the highest rate of return (ROR) for a given risk. For
each of the 20 points along the frontier, the weighted investment in each
portfolio (Weights) would achieve that rate of return.

6 Now move to A28 and press F2; then press Enter to execute the Financial
Toolbox function that plots the efficient frontier for the same portfolio data.

The following figure appears in MATLAB.

2-18

Calculating and Plotting the Efficient Frontier of Financial Portfolios

=i
-

File Edit Wiew Insert Tools Desktop Window Help

D& kRame || 08| 5O

Mean-Yariance-Efficient Frontier
0.074 ! ! ! ! !

0.072

0.07

0.068

0.066

ROR

0.064

0.062
0.06
0.058
0.056 H H H H H
0 0.01 0.02 0.03 0.04 0.05 0.06
Risk

The light blue line shows the efficient frontier. Note the change in slope
above a 6.8% return because the Corporate Bond portfolio no longer
contributes to the efficient frontier.

7 To try running this example using different data, close the figure window
and change the data in cells B4:D9. Then reexecute all the Excel Link
functions. The worksheet then shows the new frontier data, and MATLAB
displays a new efficient frontier graph.

When you finish this example, close the figure window.

2-19

2 Solving Problems with Excel Link

2-20

Bond Cash Flow and Time Mapping

This example illustrates the use of Financial Toolbox and Excel Link to
compute a set of cash flow amounts and dates given a portfolio of five bonds

whose maturity dates and coupon rates are known.

1 Click the Sheet6 tab on Ex1iSamp.x1s. The worksheet for this example

appears.

X Microsoft Excel - ExliSamp.xls !Eﬁ

8] File Edit Yiew Insert Format Tools Data Window Help ;Iiljl‘
DEESRY LR T|(o-o €|z a8l i mes o8 || mrom
Arial ~ 10 v|31u‘ |
putmatrix getmatrix evalsmng‘
Al j =\ =WILPutMatrix("maturity” Maturity)

A [B [¢ [p [E [F [&6 [H [1 [J T K [L [™M [N [o [P | oz
| 1 |Cash Flow and Time Mapping for a Portfolio of Bonds |
12 | Cash Flow Dates
| 3 |Settlement Date 26-Jul-39 Bond1
[4 Bond2
|5 Bond Data Bond3
[B | Bondd
|7 Maturi Coupon Rate Bondd
| 8 Bondt 15-Mow99 0.05875
[9 Bond2 15-May-00 0.08375
[10 Bond3 15-Mow00 0.08500
[11 |Bond4 15-May-01 0.08000
| 12 Bond5 15-Mow01 015750 Cash Flow Amounts

13
[14 Bond1
[16 Bond2
16 Excel Link Functions Bond3
1_Transfer data to MATLAB Bondd
Ol<== MLPutMatriz("maturity", Waturity") Bondd

|| wlrolr ralko sk ralr e =] o=
B|W[R|=|0|@| @D ~|H| t = |G|k =0 o]~

0 <== MLPutMatrix("cpnrate”,"CpnRate")
0 === MLPutMatriz("sd",C3)

2. Execute MATLAB Financial Toolbox Cash flow and Time mapging function.
01 <== MLEvalString("md = x2mdate(maturity 0}, sdm = x2mdate(sd 0)")
0 === MLEvalString("[cfa, cfd] = cfamounts(cpnrate, sdm, md, 2)")

3. Transform date nurbers to string cell array.
0 <== MLEvalString("i = find(isnan(cid)}; zcfd = cfd, zefd(l) = 0, scfd=datestr(zcfd 2);")
0 === MLEvalstring("ccfd = num2cell(scfd 2); cofd(i) = {N/AY cofd = reshapelccfd, size(cfd));")
0 <== MLEvalString("ccfa = ofa; cofafi) = 0; alldates = cofd(end, ;")

4. Transfer output data to Excel
0 === MLGetMatrix("ccfd”, "i3")
0 <== MLGetMatrix("alldates", "113")
0 <== MLGetMatrix{"ccfa”, "i14")

B

[36 5. Plot the cash flow diagram

[37 0 <== MLEvalString("cfplot(cfd, cfa); dtaxis('6,5dm S0);title('Cash Flow Diagram’);xlabel(Cash Flow Dates’); ylabel(Bonds?;")

4|4 [p (¥ Shestl f Shestz £ Sheets £ Sheetd 4 SheetS)Sheett |«

Ready | [[[[

2 Make A18 the active cell. Press F2, then Enter to execute the Excel Link

function that transfers the column vector Maturity to MATLAB.

Bond Cash Flow and Time Mapping

3 Make A19 the active cell to transfer the column vector Coupon Rate to
MATLAB.

4 Make A20 the active cell to transfer the settlement date to MATLAB.

5 Execute the functions in cells A23 and A24 to enable Financial Toolbox to
compute cash flow amounts and dates.

6 Now execute the functions in cells A27 through A29 to transform the dates
into string form contained in a cell array.

7 Execute the functions in cells A32 through A34 to transfer the data to Excel.

X Microsaft Excel - ExiSampds —___ HE=E|
8] File Edit Yiew Insert Format Tools Data Window Help ;Iiljl‘
DEESRY LR T|(o-o €|z a8l i mes o8 || mrom
ial -0 B s B8 %, %%
putmatriz getmatrix evalsmng‘

A34 | =| =MLGetMatrix("cefa”, “i14%)

A [B [¢ [p [E [F [&6 [H [1 [J T K [L I ™M [n |
| 1 |Cash Flow and Time Mapping for a Portfolio of Bonds |
12 | Cash Flow Dates
| 3 |Settlement Date 26-Jul-89 Bond1 | 07/26/99 11/15/99 RAA, [0S RAA, [0S
[4 Bond2 | 07/26/99 11/15/99 05/1500 TFA /A, TFA
|5 | Bond Data Bond3 | 07/26/93 | 11/15/33 05/1500 114500 WA MAA
[B | Bondd | 07/26/99 11/15/99 05/15/00 | 11/15/400 0515101 [0S
|7 Maturi Coupon Rate Bondd | 07/26/99 11/15/89 05/1500 1141500 051501 1145401
| 8 Bondt 15-Mow-599 0.05875
[9 Bond2 15-May-00 0.06375
[10 Bond3 15-Mow-00 (0.08500
[11 |Bond4 15-May-01 0.08000
| 12 Bond5 15-Mow01 015750 Cash Flow Amounts
[13] 07726099 11/15/99 051500 1115400 051501 1141501
[14 Bond1 -1.1485 1029375 a 0 a 0
[16 Bond2 -1.2473 | 31875 103.1875 1] o 1]
| 16 |Excel Link Functions Bond3 -16630 4.2500 4.2500 1042500 a 0
[17 |1. Transfer data to MATLAB Bondd -1.5652 40000 4.0000 @ 4.0000 104.0000 1]
| 18] 0 === MLPutMatrix("maturity", Waturity’) Bondd -30816 7.6780 76750 7.6750 78750 | 107.8750
ER 0 <== MLPutMatrix("cpnrate”,"CpnRate")

[20 0 === MLPutMatriz("sd",C3)

21

[22 2. Execute MATLAB Financial Toolbox Cash flow and Time mapping function.

|23 01 <== MLEvalString("md = x2mdate(maturity 0}, sdm = x2mdate(sd 0)")

[24 0 === MLEvalString("[cfa, cfd] = cfamounts(cpnrate, sdm, md, 2)")

25

| 26 3. Transform date numbers to string cell array.

|27 0 <== MLEvalString("i = find(isnan(cid)}; zcfd = cfd, zefd(l) = 0, scfd=datestr(zcfd 2);")

[28 0 === MLEvalstring("ccfd = num2cell(scfd 2); cofd(i) = {N/AY cofd = reshapelccfd, size(cfd));")

|23 0 <== MLEvalString("ccfa = ofa; cofafi) = 0; alldates = cofd(end, ;")

30

Ed Transfer output data to Excel

132 0 === MLGetMatrix("ccfd”, "i3")

S MLGetMatrix("alldates", "i13")
M == MLGetMatrix("ccfa", "i14")

E3

[36 5. Plot the cash flow diagram

[37 0 === MLEvalString("cfplot(cfd, cfa); dtaxis(x' 6,5dm 50);title(Cash Flow Diagram’);xlabel(Cash Flow Dates);ylabel{Bonds?;")

[4[» ¥ Sheetl f Shestz f Sheetd f Shestd / SheetS)Sheetf (K|
Ready [T T

2-21

2 Solving Problems with Excel Link

8 Finally, execute the function in cell A37 to display a MATLAB plot of the

cash flows for each portfolio item.
=] B3

Figure No_ 1
File Edit Tools
DEed&a "A A/ | @20

Cash Flow Diagram

Window Help

f f f I

0726 11415 0515 11415
Cash Flow Dates

5]
11415

0515

¥

9 When you finish the example, close the figure window.

2-22

Functions — By Category

Link Management Functions (p. 3-2) Working with link management
functions

Data Management Functions (p. 3-3) Working with data management
functions

3 Functions — By Category

Link Management Functions

matlabinit Initialize Excel Link and start
MATLAB process

MLAutoStart Automatically start MATLAB
process

MLClose Terminate MATLAB process

MLOpen Start MATLAB process

MLUseCellArray Toggle MLPutMatrix to use cell

arrays in MATLAB

3-2

Data Management Functions

Data Management Functions

matlabfcn Evaluate MATLAB command given
Excel data

matlabsub Evaluate MATLAB command given
Excel data and designate output
location

MLAppendMatrix Create or append MATLAB matrix
with data from Excel worksheet

MLDeleteMatrix Delete MATLAB matrix

MLEvalString Evaluate command in MATLAB

MLGetFigure Import current MATLAB figure into
Excel spreadsheet

MLGetMatrix Write contents of MATLAB matrix
in Excel worksheet

MLGetVar Write contents of MATLAB matrix
in Excel VBA variable

MLMissingDataAsNaN Set empty cells to NaN or zero

MLPutMatrix Create or overwrite MATLAB matrix
with data from Excel worksheet

MLPutVar Create or overwrite MATLAB matrix
with data from Excel VBA variable

MLShowMatlabErrors Return standard Excel Link errors
or full MATLAB errors using
MLEvalString

MLStartDir Specify MATLAB current working
directory after startup

MLUseFullDesktop Specify whether to use full MATLAB
desktop or MATLAB Command
window

3-3

3 Functions — By Category

Functions — Alphabetical
List

matlabfcn

Purpose

Syntax

Description

Examples

See Also

Evaluate MATLAB command given Excel data

Worksheet: matlabfcn(command, inputs)

command MATLAB command to evaluate. The MATLAB
command must be written as "command" (in double
quotation marks).

inputs Variable length input argument list passed to a
MATLAB command. The argument list may contain
a range of worksheet cells that contain input data.

Passes the command to MATLAB for evaluation given the function input
data. The function returns a single value or string depending upon the
MATLAB output. The result is returned to the calling worksheet cell.
This function is intended for use as an Excel worksheet function.

matlabfcn("sum", B1:B10)
sums the data in the spreadsheet cells B1 through B10 returning the

output to the active worksheet cell or Excel Visual Basic for Applications
(VBA) output variable.

matlabfcn("plot", B1:B10, "x")

plots the data in worksheet cells B1 through B10 using x as the marker
type.

matlabsub

matlabinit

Purpose

Syntax

Description

See Also

Initialize Excel Link and start MATLAB process

matlabinit

Note To run matlabinit, pull down the Excel Tools menu and click
Macro. In the Macro Name/Reference box, enter matlabinit and
click Run. Alternatively, you could include this function in a macro
subroutine. You cannot run matlabinit as a worksheet cell formula or
in a macro function.

Initializes Excel Link and starts MATLAB process. If Excel Link
has already been initialized and MATLAB is running, subsequent
invocations do nothing. Use matlabinit to start Excel Link and
MATLAB manually when you have set MLAutoStart to no. If
MLAutoStart is set to yes, matlabinit executes automatically.

MLAutoStart, MLOpen

matlabsub

Purpose

Syntax

Description

Evaluate MATLAB command given Excel data and designate output

location

Worksheet:

command

edat

inputs

matlabsub(command, edat, inputs)

MATLAB command to evaluate. The MATLAB
command must be written as "command" (in
double quotation marks).

Worksheet location where the function writes

the returned date. "edat" (in quotation marks)
directly specifies the location and it must be a cell
address or a range name. edat (without quotation
marks) is an indirect reference: the function
evaluates the contents of edat to get the location.
edat must be a worksheet cell address or range
name.

Variable length input argument list passed to
MATLAB command. Argument list may contain a
range of worksheet cells that contain input data.

Passes the specified command to MATLAB for evaluation given the
function input data. The function returns a single value or string
depending upon the MATLAB output. This function is intended for use
as an Excel worksheet function.

To return an array of data to the Excel Visual Basic for Applications
(VBA) workspace, see MLEvalString and MLGetVar.

Caution edat must not include the cell that contains the matlabsub
function. In other words, be careful not to overwrite the function itself.
Also make sure there is enough room in the worksheet to write the
matrix contents. If there is insufficient room, the function generates a

fatal error.

matlabsub

Examples matlabsub("sum", "A1", B1:B10)

sums the data in worksheet cells B1 through B10, returning the output
to cell A1.

See Also matlabfcn

MLAppendMatrix

Purpose Create or append MATLAB matrix with data from Excel worksheet
Syntax Worksheet: MLAppendMatrix(var_name, mdat)

Macro: MLAppendMatrix var_name, mdat

var_name Name of MATLAB matrix to which to append

data. "var_name" (in quotation marks) directly
specifies the matrix name. var_name (without
quotation marks) is an indirect reference: the
function evaluates the contents of var_name to
get the matrix name, and var_name must be a
worksheet cell address or range name

mdat Location of data to append to var_name. mdat
(no quotation marks). Must be a worksheet cell
address or range name.

If this argument is not initially an Excel Range
data type and you call the function from a
worksheet, Excel proceeds by performing the
necessary type coercion. However, if you call
MLAppendMatrix from within a VBA macro, and
mdat is not an Excel Range data type, the call
fails. Excel generates the error message ByRef
Argument Type Mismatch.

Description Appends data in mdat to MATLAB matrix var_name. Creates var_name
if it does not exist. The function checks the dimensions of var_name and
mdat to determine how to append mdat to var_name. If the dimensions
allow appending mdat as either new rows or new columns, it appends
mdat to var_name as new rows. The function returns an error if the
dimensions do not match. mdat must contain either numeric data or
string data. Data types cannot be combined within the range specified
in mdat. Empty mdat cells become MATLAB matrix elements containing
zero if the data is numeric and empty strings if the data is a string.

MLAppendMatrix
|

Examples B is a 2-by-2 MATLAB matrix.
MLAppendMatrix("B", A1:A2)

appends the data in cell range A1:A2 to the MATLAB matrix B. B is now
a 2-by-3 matrix with the data from A1:A2 in the third column.

Al

A2

B is a 2-by-2 MATLAB matrix. Cell C1 contains the label (string) B, and
new_data is the name of the cell range A1:B2.

MLAppendMatrix(C1, new_data)

appends the data in cell range A1:B2 to B. B is now a 4-by-2 matrix with
the data from A1:B2 in the last two rows.

Al B1
A2 B2
See Also MLPutMatrix

MLAutoStart

Purpose Automatically start MATLAB process
orksheet: MLAutoStart("yes")
Syntax Worksh yes"
MLAutoStart("no")
Macro: MLAutoStart "yes"
MLAutoStart "no"
"yes" Automatically start Excel Link and MATLAB every
time Excel starts (default).
“no" Cancel automatic startup of Excel Link and MATLAB.
If Excel Link and MATLAB are running, it does not
stop them.

Description Sets automatic startup of Excel Link and MATLAB. When Excel Link
is installed, the default is yes. A change of state takes effect the next
time Excel is started.

Examples MLAutoStart("no")

cancels automatic startup of Excel Link and MATLAB. The next time
Excel starts, Excel Link and MATLAB will not start.

See Also matlabinit, MLClose, MLOpen

4-8

MLClose

Purpose

Syntax

Description

See Also

Terminate MATLAB process

Worksheet: MLClose()
Macro: MLClose

Terminates the MATLAB process, deletes all variables from the
MATLAB workspace, and tells Excel that MATLAB is no longer
running. If no MATLAB process is running, nothing happens.

MLOpen

4-9

MLDeleteMatrix

4-10

Purpose Delete MATLAB matrix
Syntax Worksheet: MLDeleteMatrix(var_name)
Macro: MLDeleteMatrix var_name
var_name Name of MATLAB matrix to delete. "var_name"

(in quotation marks) directly specifies the matrix
name. var_name (without quotation marks) is

an indirect reference: the function evaluates the
contents of var_name to determine the matrix name,
and var_name must be a worksheet cell address or
range name.

Description Deletes the named matrix from the MATLAB workspace.

Example MLDeleteMatrix ("A")

deletes matrix A from the MATLAB workspace.

MLEvalString

Purpose

Syntax

Description

Examples

See Also

Evaluate command in MATLAB

Worksheet: MLEvalString(command)
Macro: MLEvalString command

command MATLAB command to evaluate. "command" (in
quotation marks) directly specifies the command.
command (without quotation marks) is an indirect
reference: the function evaluates the contents of
command to get the command, and command must be
a worksheet cell address or range name.

Passes a command string to MATLAB for evaluation. The specified
action alters only the MATLAB workspace. Nothing is done in the Excel
workspace.

MLEvalString("b = b/2;plot(b)")

divides the MATLAB variable b by 2 and plots it. Only the MATLAB
variable b is modified. To update data in the Excel worksheet, use
MLGetMatrix.

MLGetMatrix

4-11

MLGetFigure

Pu rpose Import current MATLAB figure into Excel spreadsheet
Syntax Worksheet: MLGetFigure(width,height)

Macro: MLGetFigure width, height

width Specify the width in normalized units of the

MATLAB figure when imported into Excel.

height Specify the height in normalized units of the
MATLAB figure when imported into Excel.

Desc ription Import the current MATLAB figure into Excel where the left-top corner
of the figure is the current spreadsheet cell.

If worksheet calculation mode is automatic, MLGetFigure executes
when you enter the formula in a cell. If worksheet calculation mode
is manual, enter the MLGetFigure function in a cell, then press F9 to
execute it. However, pressing F9 in this situation may also reexecute
other worksheet functions and generate unpredictable results.

If you use MLGetFigure in a macro subroutine, enter MatlabRequest
on the line after the MLGetFigure. MatlabRequest initializes internal
Excel Link variables and enables MLGetFigure to function in a
subroutine. Do not include MatlabRequest in a macro function unless
the function is called from a subroutine.

Examples MLGetFigure(.50, .25)
imports the current MATLAB figure into Excel. The width of the figure

is half that of the original MATLAB figure and the height is quarter of
the original figure.

See Also MLGetMatrix, MLGetVar

4-12

MLGetMatrix

Purpose

Syntax

Description

Write contents of MATLAB matrix in Excel worksheet

Worksheet:
Macro:

var_name

edat

MLGetMatrix(var_name, edat)
MLGetMatrix var_name, edat

Name of MATLAB matrix to access."var_name" (in
quotation marks) directly specifies the matrix name.
var_name (without quotation marks) is an indirect
reference: the function evaluates the contents of
var_name to get the matrix name, and var_name
must be a worksheet cell address or range name.
var_name cannot be the MATLAB variable ans.

Worksheet location where the function writes the
contents of var_name. "edat" (in quotation marks)
directly specifies the location and it must be a cell
address or a range name. edat (without quotation
marks) is an indirect reference: the function
evaluates the contents of edat to get the location,
and edat must be a worksheet cell address or range
name.

Writes the contents of MATLAB matrix var_name in the Excel
worksheet, beginning in the upper left cell specified by edat. If data
already exists in the specified worksheet cells, it is overwritten. If the
dimensions of the MATLAB matrix are larger than those of the specified
cells, the data will overflow into additional rows and columns.

Caution

edat must not include the cell that contains the MLGetMatrix function.
In other words, be careful not to overwrite the function itself. Also make
sure there is enough room in the worksheet to write the matrix contents.
If there is insufficient room, the function generates a fatal error.

4-13

MLGetMatrix

4-14

Examples

If edat is an explicit cell address and you later insert or delete rows
or columns, or move or copy the function to another cell, edit edat
to correct the address. Excel Link does not automatically adjust cell
addresses in MLGetMatrix.

If worksheet calculation mode is automatic, MLGetMatrix executes
when you enter the formula in a cell. If worksheet calculation mode is
manual, enter the MLGetMatrix function in a cell, then press F9 to
execute it. However, pressing F9 in this situation may also reexecute
other worksheet functions and generate unpredictable results.

If you use MLGetMatrix in a macro subroutine, enter MatlabRequest
on the line after the MLGetMatrix. MatlabRequest initializes internal
Excel Link variables and enables MLGetMatrix to function in a
subroutine. Do not include MatlabRequest in a macro function unless
the function is called from a subroutine.

MLGetMatrix("bonds", "Sheet2!C10")

writes the contents of the MATLAB matrix bonds starting in cell C10 of
Sheet2. If bonds is a 4-by-3 matrix, data fills cells C10..E13.

MLGetMatrix (B12, B13)

accesses the MATLAB matrix named as a string in worksheet cell B12
and writes the contents of the matrix in the worksheet starting at the
location named as a string in worksheet cell B13.

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest

End Sub

writes the contents of MATLAB matrix A in the worksheet starting
at the cell named RangeA.

In addition, when using the MLGetMatrix function in an Excel macro,
you can use a range object returned by the VBA Cells function to

MLGetMatrix
|

specify where to place the data. To do this using the range object’s
Address property:

Sub Get_Variable()

MLGetMatrix "X", Cells(3, 2).Address
MatlabRequest

End Sub

See Also MLAppendMatrix, MLPutMatrix

4-15

MLGetVar

4-16

Purpose

Syntax

Description

Examples

See Also

Write contents of MATLAB matrix in Excel VBA variable

MLGetVar ML_var_name, VBA_var_name

ML_var_name

VBA_var_name

Name of MATLAB matrix to access.
"ML_var_name" (in quotation marks) directly
specifies the matrix name. ML_var_name
(without quotation marks) is an indirect
reference: the function evaluates the contents
of ML_var_name to get the matrix name,

and ML_var_name must be a VBA variable
containing the matrix name as a string.
var_name cannot be the MATLAB variable ans.

Name of VBA variable where the function
writes the contents of ML_var_name. Use
VBA_var_name without quotation marks.

Writes the contents of MATLAB matrix ML_var_name in the
Excel Visual Basic for Applications (VBA) variable VBA _var_name.
Creates VBA_var_name if it does not exist. Replaces existing data in

VBA_var_nanme.

Sub Fetch()

MLGetVar "J", Datad

End Sub

writes the contents of MATLAB matrix J in the VBA variable named

Datad.

MLPutVar

MLMissingDataAsNaN

Purpose

Syntax

Description

Examples

See Also

Set empty cells to NaN or zero

Worksheet: MLMissingDataAsNaN("yes")
MLMissingDataAsNaN("no") (Default)
Macro: MLMissingDataAsNaN "yes"
MLMissingDataAsNaN "no" (Default)
yes" Sets empty cells to use NaNs.
"no" Sets empty cells to use 0s. (Default)

Sets empty cells to NaN or zero. When Excel Link is installed, the
default is "no" which means that empty cells are handled as 0s. If the
value of MLUseCellArray is changed to "yes", the change remains in
effect the next time Excel is started.

Note A string in an Excel range always forces cell array output and
empty cells as NaNs.

To cancel the use of NaNs for empty cells, enter

MLMissingDataAsNaN('no")

MLPutMatrix

4-17

MLOpen

4-18

Purpose

Syntax

Description

Examples

See Also

Start MATLAB process

Worksheet: MLOpen ()

Macro: MLOpen

Starts MATLAB process. If a MATLAB process has already been
started, subsequent calls to MLOpen do nothing. Use MLOpen to restart
MATLAB after you have stopped it with MLClose in a given Excel
session.

Note We recommend using matlabinit rather than MLOpen, since
matlabinit starts MATLAB and initializes Excel Link.

MLOpen ()

starts the MATLAB process.

matlabinit, MLClose

MLPutMatrix

Purpose

Syntax

Description

Create or overwrite MATLAB matrix with data from Excel worksheet

Worksheet: MLPutMatrix(var_name, mdat)
Macro: MLPutMatrix var_name, mdat

var_name Name of MATLAB matrix to create or overwrite.
"var_name" (in quotation marks) directly specifies the
matrix name. var_name (without quotation marks)
is an indirect reference: the function evaluates the
contents of var_name to get the matrix name, and
var_name must be a worksheet cell address or range
name.

mdat Location of data to copy into var_name. mdat (no
quotation marks). Must be a worksheet cell address
or range name.

Creates or overwrites matrix var_name in MATLAB workspace with
specified data in mdat. Creates var_name if it does not exist. If
var_name already exists, this function replaces the contents with mdat.
Empty numeric data cells within the range of mdat become numeric
zeros within the MATLAB matrix identified by var_name.

If any element of mdat contains string data, mdat is exported as a
MATLAB cell array. Empty string elements within the range of mdat
become NaNs within the MATLAB cell array.

To use MLPutMatrix in a subroutine, you must indicate the source of the
worksheet data using the Excel macro Range. For example:

Sub test()
MLPutMatrix "a", Range("A1:A3")
End Sub

If you have a named range in your worksheet, you can use the name
instead of actually specifying the range. For example:

4-19

MLPutMatrix

Sub test()
MLPutMatrix "a", Range("temp")
End Sub

where temp is a named range in your worksheet.
Examples MLPutMatrix("A", A1:C3)

Creates or overwrites matrix A in the MATLAB workspace with the
data in the worksheet range A1:C3.

See Also MLAppendMatrix, MLGetMatrix

4-20

MLPutVar

Purpose

Syntax

Description

Examples

Create or overwrite MATLAB matrix with data from Excel VBA variable

MLPutVar ML_var_name, VBA_var_name

ML_var_name Name of MATLAB matrix to create or overwrite.
"ML_var_name" (in quotation marks) directly
specifies the matrix name. ML_var_name (without
quotation marks) is an indirect reference: the
function evaluates the contents of ML_var_name
to get the matrix name, and ML_var_name must
be a VBA variable containing the matrix name
as a string.

VBA var_name Name of VBA variable whose contents are written
to ML_var_name. Use VBA var_name without
quotation marks.

Creates or overwrites matrix ML_var_name in MATLAB workspace with
data in VBA_var_name. Creates ML_var_name if it does not exist. If
ML_var_name already exists, this function replaces the contents with
data from VBA_var_name. Use MLPutVar only in a macro subroutine, not
in a macro function or in a subroutine called by a function.

Empty numeric data cells within VBA_var_name become numeric zeros
within the MATLAB matrix identified by ML_var_name.

If any element of VBA_var_name contains string data, VBA_var_name
is exported as a MATLAB cell array. Empty string elements within
VBA_var_name become NaNs within the MATLAB cell array.

Sub Put()
MLPutVar "K", DataK
End Sub

creates or overwrites MATLAB matrix K with the data in the Excel
Visual Basic for Applications (VBA) variable Datak.

4-21

MLPutVar

See Also MLGetVar

4-22

MLShowMatlabErrors

Purpose

Syntax

Description

Examples

See Also

Return standard Excel Link errors or full MATLAB errors using
MLEvalString

Worksheet: MLShowMatlabErrors("yes")
MLShowMatlabErrors("no") (Default)
Macro: MLShowMatlabErrors "yes"
MLShowMatlabErrors "no" (Default)
yes" Displays the full MATLAB error string in Excel
upon MLEvalString failure.

"no" Displays the standard Excel Link errors in Excel
upon MLEvalString failure.

Sets the error display mode of Excel Link when executing MATLAB
commands using MLEvalString.

MLShowMatlabErrors("no")

will cause MLEvalString failures to show standard Excel Link errors
such as #COMMAND!.

MLShowMatlabErrors("yes")

Will cause MLEvalString failures to show MATLAB error strings, for
example:

??? Undefined function or variable 'foo'

MLEvalString

4-23

MLStartDir

Purpose

Syntax

Description

Examples

See Also

4-24

Specify MATLAB current working directory after startup

Worksheet: MLStartDir(path)
Macro: MLStartDir path

path Specify the current MATLAB working directory
after startup.

Sets the working directory for MATLAB after startup. Note this
function does not work like the standard Windows Start In setting in
that it will not automatically run any startup.m or matlabrc.m found
in the directory specified.

To set the MATLAB working directory to d: \work after startup, run:
MLStartDir (d:\work)

If your directory path includes a space, embed the path in single
quotation marks within double quotation marks. For example, to set
the MATLAB working directory to d: \my work, run:

MLStartDir ('d:\my work')

MLAutoStart

MLUseCellArray

Purpose

Syntax

Description

Examples

See Also

Toggle MLPutMatrix to use cell arrays in MATLAB

Worksheet: MLUseCellArray("yes")
MLUseCellArray ("no")

Macro: MLUseCellArray "yes"
MLUseCellArray "no"

"yes" Automatically uses cell arrays for transfer of data
structures.

“no" Do not automatically use cell arrays for transfer of

data (default).

Using MLUseCellArray forces MLPutMatrix to use cell arrays for
transfer of data (for example, dates). When Excel Link is installed, the
default is "no". If the value of MLUseCellArray is changed to "yes", the
change remains in effect the next time Excel is started.

To cancel automatic use of cell arrays for easy transfer of data, enter

MLUseCellArray("no")

MLPutMatrix

4-25

MLUseFullDesktop

4-26

Purpose

Syntax

Description

Examples

See Also

Specify whether to use full MATLAB desktop or MATLAB Command
window

Worksheet: MLUseFullDesktop("yes")
MLUseFullDesktop("no")

Macro: MLUseFullDesktop "yes"
MLUseFullDesktop "no"

"yes" Start MATLAB with the full desktop.
"no" Start MATLAB with the Command window only.

Sets MATLAB to start with the full desktop or Command window only.
When Excel Link is installed, the default is "yes".

MLUseFullDesktop("no")

will cause MATLAB to start with the command window only.

matlabinit, MLClose, MLOpen

Error Messages and
Troubleshooting

This appendix covers the following topics:

Excel Cell Error Messages (p. A-2)

Error Messages (p. A-6)

Audible Error Signals (p. A-10)

Data Errors (p. A-11)

Error messages displayed in a
worksheet cell

Excel error messages and their
meanings

Audible error signals while passing
data to MATLAB

Undesirable data characteristics

A Eror Messages and Troubleshooting

Excel Cell Error Messages

Excel may display one of these error messages in a worksheet cell.

In the following table of Excel cell error messages, the first column contains
the message provided by Excel. The error messages all begin with the number
sign #. Most end with an exclamation point ! or with a question mark ?.

Excel Cell Error Messages

Excel Cell

Error Message Meaning Solution

#COLS>#MAXCOLS! Your MATLAB variable exceeds | This is a limitation in Excel. Try
the Excel limit of #MAXCOLS! the computation with a variable
columns. containing fewer columns.

#COMMAND ! MATLAB does not recognize the | Verify the spelling of the MATLAB
command in an MLEvalString command. Correct typing errors.
function. The command may be
misspelled.

#DIMENSION! You used MLAppendMatrix and Verify the matrix dimensions and
the dimensions of the appended | the appended data dimensions,
data do not match the dimensions | and correct the argument. See
of the matrix you want to append. | MLAppendMatrix in Chapter 4,

“Functions — Alphabetical List”.

#INVALIDNAME ! You entered an illegal variable Make sure to use legal MATLAB

name. variable names. MATLAB
variable names must start with a
letter followed by up to 30 letters,
digits, or underscores.

#INVALIDTYPE! You have specified an illegal For a list of supported MATLAB
MATLAB data type with data types, see “Data Types”
MLGetVar or MLGetMatrix. in the MATLAB Programming

documentation.

#MATLAB? You used an Excel Link function | Start Excel Link and MATLAB.
and MATLAB is not running. See “Starting and Stopping Excel

Link” on page 1-8.

A-2

Excel Cell Error Messages

Excel Cell Error Messages (Continued)

Excel Cell

Error Message Meaning Solution

#NAME? Excel doesn’t recognize Be sure the excllink.xla add-in
the function name. The is loaded. See “Configuring Excel
excllink.xla add-in is not Link” on page 1-5. Check the
loaded, or the function name may | spelling of the function name.
be misspelled. Correct typing errors.

#NONEXIST! You referenced a nonexistent Verify the spelling of the MATLAB
matrix in an MLGetMatrix or matrix. Use the MATLAB whos
MLDeleteMatrix function. The command to display existing
matrix name may be misspelled. | matrices. Correct typing errors.

#ROWS>#MAXROWS ! Your MATLAB variable exceeds | This is a limitation in Excel. Try
the Excel limit of #MAXROWS! the computation with a variable
TOWS. containing fewer rows.

#SYNTAX? You entered an Excel Link Verify and correct the function
function with incorrect syntax; syntax. See Chapter 4, “Functions
for example, the double quotation | — Alphabetical List” for function
marks (") may be missing, or syntax.
you used single quotation marks
() instead of double quotation
marks.

#VALUE! An argument is missing from a Supply the correct number of
function, or a function argument | function arguments, of the correct
is the wrong type. type.

#VALUE ! A macro subroutine uses Since the function works

MLGetMatrix followed by
MatlabRequest, which is correct
standard usage. A macro function
calls that subroutine, and you
execute that function from a
worksheet cell. The function
works correctly, but this message
appears in the cell.

correctly, you may ignore the
message. Or, in this special case,
remove MatlabRequest from the
subroutine.

A-3

A Eror Messages and Troubleshooting

Note When you open an Excel worksheet that contains Excel Link functions,
Excel tries to execute the functions from the bottom up and right to left, thus
possibly generating cell error messages (#COMMAND !, #NONEXIST!, etc.). Such
behavior is usual for Excel. Simply ignore the messages, close any MATLAB
figure windows, and reexecute the cell functions one at a time in the correct
order by pressing F2, then Enter.

A4

A Eror Messages and Troubleshooting

A-5

A Eror Messages and Troubleshooting

A-6

Error Messages

Excel may display one of these error message boxes.

¢ The first column of this table shows the error messages. The first three are
from Excel, and the last one is from the license manager.

¢ The second column 2 indicates the type of error that caused the message
box to appear.

¢ The third column proposes a solution for the error.

Excel Error Message Boxes

Excel Error Message Box

Meaning

Solution

You entered a formula
incorrectly. Common errors

Check entry and correct typing
errors.

Microsoft E xcel include a space between the
& Erorin formud function name and the left
parenthesis; or missing, extra,
Help or mismatched parentheses.
You tried to execute a Click OK. The References
macro and the location of window opens. Remove
excllink.xla is incorrect. the check from MISSING:

& Can't find project or library

excllink.xla. Find
excllink.xla in its correct
location, select its check box

in the References window, and
click OK.

Microsoft Excel

A

Rur-time errar 1004"

Cellz method of &pplication class failed

You used MLGetMatrix and the
matrix is larger than the space
available in the worksheet.
This error destabilizes Excel
Link and changes worksheet
calculation mode to manual.

Click OK. Reset worksheet
calculation mode to automatic
and save your worksheet (if
desired). Close Excel and
MATLAB. Restart Excel, Excel
Link, and MATLAB.

Error Messages

Excel Error Message Boxes (Continued)

Excel Error Message Box

Meaning

Solution

License Manager

Q Excel Link license checkout failed!

The license passcode that you
entered was invalid.

Check that you entered the
license passcode properly. If
you used a proper passcode
and you are still unable to
start Excel Link, contact your
MathWorks representative.

<) Datasource: EXc

I—

I—
Ok |
Cancel |

=10l x|

Uzerhlame:

Pazsword:

This message appears when
an attempt to connect to Excel
from Database Toolbox fails.

Make sure that the Excel
spreadsheet referenced by the
data source exists, then retry
the connection.

A-7

A Eror Messages and Troubleshooting

Excel Error Message Boxes

Excel Error Message Box | Meaning Solution

If more than one version | To correct this error, perform the
of MATLARB is installed | following:

: on your desktop, when
o et gt you attempt to start the | 1 Shut down all instances of MATLAB
MATLAB automation and Microsoft Excel.

server from Microsoft
Excel, you receive this 2 Open a Command Prompt WindOW,
error. and using cd, change to the
bin\win32 subdirectory of your
MATLAB 7.0 installation directory.

Run-time error -2147024893 (30070003)

End pebug | Hee |

3 Type the command

.\matlab /regserver

4 When MATLAB starts, close it.
Using /regserver fixes the registry
entries.

5 Start Microsoft Excel. Excel Link
should now load properly.

6 Verify that Excel Link is working by
entering the following command from
the MATLAB Command Window:

a = 3.14159

7 In the open instance of Microsoft
Excel, enter the following formula
in cell A1:

=mlgetmatrix("a","atl")

8 The value 3.14159 appears in cell A1.

A-8

A Eror Messages and Troubleshooting

A-9

A Eror Messages and Troubleshooting

Audible Error Signals

Audible error signals while passing data to MATLAB with MLPutMatrix
or MLAppendMatrix usually mean you have insufficient computer memory
to carry out the operation. Close other applications or clear unnecessary
variables from the MATLAB workspace and try again. If the error signal
reoccurs, you probably have insufficient physical memory in your computer
for this operation.

A-10

Data Errors

Data Errors

In this section...

“Matrix Data Errors” on page A-11

“Errors When Opening Saved Worksheets” on page A-11

Matrix Data Errors
Data in the MATLAB or Excel workspaces may produce the following errors.

Data Errors

Data Error

Cause

Solution

MATLAB matrix ce
contain zeros (0).

lls Corresponding Excel worksheet

cells are empty.

Excel worksheet cells must
contain only numeric or string
data.

MATLAB matrix is
1-by-1 zero matrix.

a You used quotation marks
around the data-location

MLAppendMatrix.

argument in MLPutMatrix or

Correct the syntax to remove
quotation marks.

MATLAB matrix is
empty ([]).

VBA variable in MLPutVar.

You referenced a nonexistent

Correct the macro; you may
have typed the variable name
incorrectly.

VBA matrix is empty.

You referenced a nonexistent
MATLAB variable in MLGetVar.

Correct the macro; you may
have typed the variable name
incorrectly.

Errors When Opening Saved Worksheets

This section describes errors that you may encounter when opening saved

worksheets.

® When you open an Excel worksheet that contains Excel Link functions,

Excel tries to execute the functions from the bottom up and right to left,
thus possibly generating cell error messages (#COMMAND !, #NONEXIST!, etc.).

A-11

A Eror Messages and Troubleshooting

A-12

Such behavior is usual for Excel. Simply ignore the messages, close any
MATLAB figure windows, and reexecute the cell functions one at a time in
the correct order by pressing F2, and then Enter.

If you save an Excel worksheet containing Excel Link functions and later
open it under a different computer environment where the excllink.xla
add-in is in a different location, Excel may display a message box.

Microzoft Excel Eq

@ Thiz document containg links, Re-establizh links?

[Mo | [Heb]

To address this issue, do the following:

a Click No.

b Select Edit > Links.

¢ In the Links dialog box, click Change Source.

d In the Change Links dialog box, find and select excllink.xla under
matlabroot/toolbox/exlink and click OK.

Excel executes each function as it changes its link. You may see
MATLAB figure windows and hear error beeps as the links change and
functions execute; ignore them.

e Back in the Links dialog box, click OK. The worksheet now correctly
connects to the Excel Link add-in.

Or, instead of using the Links menu, you can manually edit the link
location in each affected worksheet cell to show the correct location of
excllink.xla.

Examples

Use this list to find examples in the documentation.

B Examples

Macro Examples

“Example: Using MLGetMatrix in a Macro Subroutine” on page 1-18
“Example: Running Excel Link Functions from the Visual Basic Editor”
on page 1-18

Financial Examples

“Data Regression and Curve Fitting” on page 2-3

“Data Interpolation” on page 2-9

“Stock Option Pricing Using the Binomial Model” on page 2-13
“Calculating and Plotting the Efficient Frontier of Financial Portfolios”
on page 2-16

“Bond Cash Flow and Time Mapping” on page 2-20

A

add-in, Excel Link 1-5 A-3
audible error signals A-10
/automation option 1-8

beeps A-10
binomial tree 2-13

C

calculation mode A-6

cash flow example 2-20

cell error messages A-2

COLS error A-2

COMMAND error A-2

computer memory errors A-10
curve fitting example 2-3

D

data errors A-11

data interpolation example 2-9

data types 1-2

data-location argument A-10 to A-11
date numbers 1-20

date system 1-20

dates 1-20

DIMENSION error A-2

double quotation marks A-3

efficient frontier example 2-16
empty matrix A-11
error messages A-2
examples
cash flow 2-20
efficient frontier 2-16
interpolating data 2-9

regression and curve fitting 2-3

stock option 2-13
Excel error message boxes A-6
Excel Link

configuring 1-5

installing 1-3

starting 1-8

stopping 1-3 1-9

using 2-1
Excel Link functions

about 1-10
excllink.xla 1-3
excllink.xla add-in A-6
exlink.ini file 1-3
Ex1liSamp.x1s file

location 1-3

purpose 2-1

F

file initialization 1-3
Function Wizard for Excel Link 1-13
functions
about 1-10
arguments
working with 1-13
Excel Link
types of 1-10
Excel Link versus Microsoft Excel 1-10
MATLAB Function Wizard for Excel
Link 1-13
running from within Excel Visual Basic
Editor 1-18

initialization file 1-3

international users
information for 1-22

interpolating data 2-9

Index-1

Index

INVALIDNAME error A-2 N
INVALIDTYPE error A-2 NAME error A-3
NONEXIST error A-3
K nonexistent variable A-11
Kernel32.d1ll 1-3
P
L passcode
. 1i A-
license passcode A-7 icense A-7
localization 1-22 Preferences
setting 1-6
M R

macros
creating 1-17

MATLAB error A-2

MATLAB Function Wizard for Excel Link 1-13

matlabfcn 4-2

regression and curve fitting 2-3
requirements 1-3
ROWS error A-3

matlabinit 4-3 S

matlabsub 4-4 signals error A-10

matrix dimensions A-2 single quotation marks A-3
MLAppendMatrix 4-6 spreadsheet formulas 1-11
MLAutoStart 4-8 spreadsheets 1-11

MLClose 4-9 using 1-11

MLDeleteMatrix 4-10 stock option pricing example 2-13
MLEvalString 4-11 SYNTAX error A-3

MLFullDesktop 4-26 system

MLGetFigure 4-12 date 1-20

MLGetMatrix 4-13 system path

MLGetVar 4-16 files on 1-3
MLMissingDataAsNaN 4-17

MLOpen 4-18

MLPutMatrix 4-19 T

MLPutVar 4-21 troubleshooting error messages A-2
MLShowMatlabErrors 4-23

MLStartDir 4-24 \V/

MLUseCellArray 4-25
VALUE error A-3

Index-2

Index

\"."} Z
worksheet formulas 1-11 zero matrix A-11
worksheets 1-11 zero matrix cells A-11
saved A-11
using 1-11

Index-3

	toc
	Getting Started
	What Is Excel Link?
	Installing Excel Link
	System Requirements
	Installing Excel Link
	Files and Directories Created by the Installation
	Modifying Your System Path

	Configuring Excel Link
	Configuring Excel to Work with Excel Link
	Setting Excel Link Preferences

	Starting and Stopping Excel Link
	Automatically Starting Excel Link
	Manually Starting Excel Link
	Connecting to an Existing MATLAB Session
	Stopping Excel Link

	About Functions
	How Excel Link Functions Differ from Microsoft Excel Functions
	Types of Excel Link Functions
	Using Worksheets
	Entering Functions into Worksheet Cells
	Automatic Calculation Mode Vs. Manual Calculation Mode

	Working with Arguments in Excel Link Functions
	Variable-name Arguments
	Data-location Arguments

	Using the MATLAB Function Wizard for Excel Link
	Create Macros for Excel Link Functions
	Example: Using MLGetMatrix in a Macro Subroutine
	Example: Running Excel Link Functions from the Visual Basic Edit

	Dates
	Information for International Users

	Solving Problems with Excel Link
	About the Examples
	Data Regression and Curve Fitting
	Worksheet Version
	Macro Version

	Data Interpolation
	Stock Option Pricing Using the Binomial Model
	Calculating and Plotting the Efficient Frontier of Financial Por
	Bond Cash Flow and Time Mapping

	Functions — By Category
	Link Management Functions
	Data Management Functions

	Functions — Alphabetical List
	Error Messages and Troubleshooting
	Excel Cell Error Messages
	Error Messages
	Audible Error Signals
	Data Errors
	Matrix Data Errors
	Errors When Opening Saved Worksheets

	Examples
	Macro Examples
	Financial Examples

	Index

	tables
	Excel Cell Error Messages
	Excel Error Message Boxes
	Excel Error Message Boxes
	Data Errors

